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Abstract In this paper, mistuned non-axisymmetric periodic structures are considered. In such a structure, vibra-
tion localization, which results in large vibrations in some components of the structure, can occur. Such a behavior
is due to mistunings in the structure components, small damping, and weak coupling between components. The
efficacy of a passive technique (previously proposed by the author for axisymmetric structures) in suppressing vibra-
tion localization in mistuned non-axisymmetric periodic structures is examined. The technique is based on adding
small components between components of structures. It is first shown numerically that the added components sup-
press vibration localization in mistuned structures. Then, this conclusion is rigorously proved by using the singular
perturbation method. Application of the technique studied in the paper to comb drives of micro electro-mechanical
systems (MEMS) is given.

Keywords Comb drives of micro electro-mechanical systems (MEMS) · Mistuned non-axisymmetric periodic
structures · Mistunings · Singular perturbation method · Vibration localization

1 Introduction

In this paper, suppression of vibration localization in periodic structures is studied. The work presented here is a
continuation of what has been reported in [1–3]. This paper is different from [1–3] in two respects: (i) periodic
structures considered in [1–3] are axisymmetric, where each component of a structure is surrounded by two com-
ponents. The periodic structures considered in this paper, however, have two components at their ends that have
only one neighboring component; (ii) components of structures are modeled by an approach different from that in
[1–3].

Vibration localization can occur in periodic structures. This phenomenon has been studied by numerous research-
ers; see, e.g., [1–13] and references therein. A brief description of vibration localization is as follows. Components
of periodic structures are designed to have identical geometry (dimensions) and material properties. In reality,
however, components of fabricated structures are not exactly identical and differ slightly from each other. In this
case, the structure is said to be mistuned. The differences between components of a mistuned structure and a desired
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Fig. 1 A non-axisymmetric
periodic structure, such as a
comb drive used in MEMS.
Components at both ends of
the structure have only one
neighboring component.
The structure components
can vibrate in the directions
of y1, y2, . . . , yn . In an
axisymmetric structure each
component of the structure
is surrounded by two
components

1 2 ny y y
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component are called mistunings. Mistunings are typically due to slight differences in the geometry and material
properties of components which are mainly introduced during fabrication.

If there were no mistunings in components of a periodic structure, then the dynamics of components would have
been (almost) the same. Small mistunings, however, can cause significant differences in the dynamics of compo-
nents. For instance, consider a mistuned structure whose components are subjected to the same harmonic input. In
such a structure, near the structure fundamental frequency, some components may vibrate with small amplitudes,
while some others may vibrate with significantly larger amplitudes. This behavior is known as vibration localization.
Roughly speaking, vibration localization in a periodic structure is due to mistunings in the structure components,
small damping, and weak coupling between components.

Vibration localization in a periodic structure is mostly considered undesirable since it causes large vibrations and
stresses leading to possible damage to some of the structure components. Several researchers have devised means
of reducing vibration localization; see, e.g., [1–3,6,8,12]. In [1–3], a novel passive technique is proposed by which
vibration localization in mistuned axisymmetric periodic structures is suppressed.

Suppression of vibration localization in non-axisymmetric periodic structures is an important problem awaiting
viable solutions. An example of such a structure is a comb drive.

Comb drives are miniaturized comb-like structures used in many micro-electro-mechanical systems (MEMS).
For instance, they are used in actuators of micro grippers, X–Y micro stages, micro-mechanical gear trains, vibromo-
tors, data-storage devices, and optical switches; or they are used in sensors such as force-balanced accelerometers,
laterally oscillating gyroscopes, friction test devices, voltmeters, and scanning probe devices; see, e.g., [14–27] and
references therein.

Comb drives consist of two interdigiated comb-like structures. One comb is fixed and the other one is attached
to a compliant structure, and hence is movable. When a voltage difference is applied between the combs, an elec-
trostatic driving force is generated that moves the movable comb towards the fixed one. To generate a reasonably
large driving force, combs should have many fingers, because the generated force is linearly proportional to the
number of fingers. A typical comb is shown in Fig. 1. Fingers of most comb drives are designed to have identical
geometry and material properties. That is, comb drives are designed to be periodic structures.

The position of the movable comb is controlled by the generated electrostatic force and the mechanical restoring
force of the compliant structure to which it is attached. The driving force moves the movable comb axially in the
x-direction; see Fig. 1. Forces applied to a finger of the movable comb by the two adjacent fingers of the fixed
comb are balanced. However, any perturbation in these forces would result in an offset force that pulls the finger
sideways, transversal to the x-direction. This behavior is known as electro-mechanical side instability (also known
as side snap-over); see, e.g., [21,23] and references therein. The sideway motion of fingers, which can be intensified
by vibration localization, severely limits the large stable travel range of the movable comb. Such motion can result
in the adhesion of the movable fingers to the fixed ones, and hence damage the comb drive; see, e.g., [16, p. 133].
Therefore, it is important to design comb drives, the fingers of which move sideways as little as possible.
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Fig. 2 A schematic of a
cantilever beam. The beam
is mounted on a base to
which the acceleration ua(·)
is applied
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In this paper, it is shown that vibration localization in mistuned non-axisymmetric periodic structures can be
suppressed by the technique proposed in [1–3]. The organization of the paper is as follows. In Sect. 2, a mathematical
model of mistuned non-axisymmetric periodic structures is presented. In Sect. 3, it is explained how to determine
the possibility of the occurrence of vibration localization in such structures. In Sect. 4, the passive technique of
suppressing vibration localization proposed in [1–3] is adopted. This technique is based on adding small compo-
nents between the structure components. Via an example of a comb drive, it is illustrated that the added components
suppress vibration localization in mistuned non-axisymmetric periodic structures. In Sect. 5, it is rigorously proved
that the added components suppress vibration localization. The proof is established by using a dichotomy in the
dynamics of the structure to which the small components are added, and by applying the singular perturbation
method.

2 A model of mistuned non-axisymmetric periodic structures

In this section, a mathematical model of a vibrating cantilever beam is first presented. Then, based on the beam
model, a mathematical model of mistuned non-axisymmetric periodic structures with n components, such as that
shown in Fig. 1, is derived. It is remarked that the approach to the modeling of periodic structures in this paper differs
from that in [1–3]. In this paper, the structure components are considered as (elastic) cantilever beams, whereas in
[1–3], the structure components are considered as rigid beams connected to a rigid base by torsional springs.

2.1 A mathematical model of a vibrating cantilever beam

In Fig. 2, a schematic of a cantilever beam is shown. The length, width, and thickness of the beam are denoted
by l, w, and h, respectively. The mass density and the modulus of elasticity of the beam are denoted by ρ and E ,
respectively. The beam is mounted on a base to which an acceleration ua(·) is applied. Due to this external input,
the beam vibrates transversally. The transversal displacement of the beam at an x ∈ [0, l] and a t ≥ 0 is denoted by
y(x, t) ∈ R.
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With this set-up, a mathematical model describing the dynamics of the beam has been derived in [28–30]. This
model, which is partially adopted in this paper, is described briefly in the following.

The transversal displacement of the beam is written as

y(x, t) = φ(x)q(t), (1)

for all x ∈ [0, l] and t ≥ 0. In Eq. 1, the real- and scalar-valued function x �→ φ(x), known as the trial or shape
function, is

φ(x) = a
( x

l

)2 − b
( x

l

)3
, (2)

for all x ∈ [0, l], where

a = 4.7896, b = 2.1976. (3)

The real- and scalar-valued function t �→ q(t) in Eq. 1, which is known as the generalized coordinate, is the solution
of the following second-order ordinary differential equation:

m q̈(t) + k q(t) = − f ua(t), q(0) = 0, q̇(0) = 0, (4)

for all t ≥ 0, where

m = a1ρwhl, k = a2 Ewh3

3l3 , f = a3ρwhl, (5)

with

a1 = a2

5
− 2ab

6
+ b2

7
= 1.7694, (6a)

a2 = a2 − 3ab + 3b2 = 5.8517, (6b)

a3 = a

3
− b

4
= 1.0471. (6c)

The unique solution of system (4) for t �→ q(t) can be obtained. When this solution is substituted in Eq. 1, the
transversal displacement of the undamped beam is (approximately) obtained.

It can be easily verified that x �→ φ(x) in Eq. 2 is a monotonically increasing function over the interval
[0, 2al/(3b)] = [0, 1.453l]. Thus, x �→ φ(x) is maximum at x = l. Therefore, the absolute value of the displace-
ment of the tip of the beam, |y(l, t)|, is the largest for all t ≥ 0.

2.2 A mathematical model of mistuned periodic structures

In Fig. 1, a periodic structure with n components is shown. Each component is considered as a cantilever beam.
The length, width, and thickness of the i th beam for an i = 1, 2, . . . , n are denoted by li , wi , and hi , respectively.
The transversal displacement of the i th beam is written as

yi (x, t) = φ(x) qi (t), (7)

for all x ∈ [0, li ] and t ≥ 0, where x �→ φ(x) is that in Eq. 2 and t �→ qi (t) is the generalized coordinate of the
beam.

Using the model for one cantilever beam in Eq. 4, a mathematical model of the structure can be obtained as

M q̈(t) + αM q̇(t) + K q(t) = −f ua(t), (8)

for all t ≥ 0. In Eq. 8, the vector of generalized coordinates is

q(t) = [q1(t) q2(t) . . . qn(t)]T ∈ R
n, (9)
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for all t ≥ 0. The initial conditions of system (8) are q(0) = 0n and q̇(0) = 0n , where 0n denotes the zero vector
in R

n . The input (influence) vector through which the acceleration ua(·) is applied to system (8) is

f = [ f1 f2 . . . fn]T ∈ R
n, (10)

where fi is computed via Eq. 5 for all i = 1, 2, . . . , n. The mass and stiffness matrices of system (8) are, respectively,

M = diag[m1, m2, . . . , mn] ∈ R
n×n, (11a)

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

k1 + kc −kc 0 0 · · · 0 0 0
−kc k2 + 2kc −kc 0 · · · 0 0 0

0 −kc k3 + 2kc −kc · · · 0 0 0
...

...
...

... · · · ...
...

...

0 0 0 0
... −kc kn−1 + 2kc −kc

0 0 0 0 · · · 0 −kc kn + kc

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
n×n, (11b)

where mi and ki are computed via Eq. 5 for all i = 1, 2, . . . , n, and the positive real number kc represents the
coupling between two adjacent beams. The damping proportionality factor in system (8) is denoted by the positive
real number α.

Two remarks regarding system (8) are in order: (i) the adjacent components of the structure are coupled. It is
difficult to model and quantify the coupling of components. In this paper, it is assumed that the structure components
are coupled via massless springs of stiffness kc; (ii) the structure components are designed to have their dimensions
li , wi , and hi equal to desired values ld , wd , and hd , respectively, for all i = 1, 2, . . . , n. In reality, however, the
dimensions of the fabricated components are different from the desired values. That is, there are mistunings in the
structure.

To study the dynamics of the mistuned structure, the following state-space representation of system (8) will be
used:

d

dt

[
q(t)
q̇(t)

]
= A

[
q(t)
q̇(t)

]
+ b f ua(t),

[
q(0)

q̇(0)

]
=

[
0n

0n

]
, (12a)

⎡
⎢⎢⎢⎣

y1(l1, t)
y2(l2, t)

...

yn(ln, t)

⎤
⎥⎥⎥⎦ = C

[
q(t)
q̇(t)

]
, (12b)

for all t ≥ 0, where yi (li , t) = φ(li )qi (t) denotes the displacement of the tip of the i th beam for an i = 1, 2, . . . , n,
and

A =
[

0 In

−M−1 K −α In

]
∈ R

2n×2n, b f =
[

0n

−M−1f

]
∈ R

2n, (13a)

C = [a4 In 0] ∈ R
n×2n, (13b)

with

a4 = a − b = 2.5920, (14)

and In denotes the n × n identity matrix.
Vibration localization in system (8) is studied via the representation in Eq. 12.
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3 Analysis based on transfer functions

In studying vibration localization in mistuned periodic structures, transfer functions from the applied input to struc-
ture displacements play an important role; see [1–3]. Let the transfer function from the applied acceleration to the
displacement of the tip of the i th beam for an i = 1, 2, . . . , n be denoted by gi (s). From Eqs. 12 and 8, it follows
that⎡
⎢⎢⎢⎣

g1(s)
g2(s)

...

gn(s)

⎤
⎥⎥⎥⎦ = C(s I2n − A)−1b f = −a4(Ms2 + αMs + K )−1f, (15)

where A, b f , and C are given by Eq. 13. To each transfer function gi (s) there corresponds an H∞-norm defined by

‖gi‖∞ := max
ω ∈ R

|gi (jω)|, (16)

where j = √−1. The norm ‖gi‖∞ corresponds to the global maximum of the Bode magnitude plot of gi (s). By
use of the state-space representation in Eq. 12, the transfer functions in Eq. 15 and their corresponding H∞-norms
can be conveniently computed by MATLAB programs; see [31].

The occurrence of vibration localization due to mistunings is easily determined when ‖g1‖∞, ‖g2‖∞, . . . , ‖gn‖∞
are known. If ‖gi‖∞ for at least one i = 1, 2, . . . , n is much larger than the H∞-norms of the other transfer func-
tions, then vibration localization occurs. In other words, if ‖g1‖∞, ‖g2‖∞, . . . , ‖gn‖∞ do not differ much from
each other, vibration localization does not occur.

To illustrate vibration localization due to mistunings, an example is now given.

Example 3.1 Let the structure in Fig. 1 be a comb drive made of silicon with the following material properties:

ρ = 2329 kg/m3, E = 15 × 1010 N/m2. (17)

Let the comb drive have six fingers. The desired dimensions of the fingers are

ld = 100 µm, wd = 7 µm, hd = 2 µm. (18)

Furthermore, let the coupling stiffness and the damping proportionality factor in system (8) be, respectively,

kc = 1 N/m, α = 15,000 s−1. (19)

With this set-up, several studies are conducted:
Study 1) No mistuning: Let there be no mistunings. That is, let the dimensions of the fingers li , wi , and hi be equal
to ld , wd , and hd , respectively, for all i = 1, 2, . . . , 6. The displacements of the tips of the fingers are related to
the applied acceleration by transfer functions g1(s), g2(s), . . . , g6(s) obtained via Eq. 15. The H∞-norms of these
transfer functions are computed using MATLAB; they are

‖g1‖∞ = ‖g2‖∞ = · · · = ‖g6‖∞ = 0.6068 × 10−10 s2. (20)

Since there is no mistuning, a same value for the H∞-norms is expected: no mistuning implies no vibration
localization.

The Bode magnitude plots of g1(s), g2(s), . . . , g6(s) are depicted in Fig. 3. It is remarked that the transfer func-
tions corresponding to the fingers at both ends of the comb drive are slightly different from those corresponding to
the other fingers since they have only one neighboring finger. Nevertheless, the differences are not discernible and
the Bode magnitude plots of transfer functions corresponding to all fingers overlap.
Study 2) Effect of mistunings: Let there be mistunings. For instance, let

l1 = 104 µm, w1 = 6.7 µm, h1 = 1.9 µm,

l2 = 102 µm, w2 = 7.05 µm, h2 = 2 µm,

l3 = 105 µm, w3 = 7.02 µm, h3 = 1.9 µm,

l4 = 97 µm, w4 = 6.8 µm, h4 = 2.02 µm,

l5 = 105 µm, w5 = 6.85 µm, h5 = 2 µm,

l6 = 99 µm, w6 = 7 µm, h6 = 1.99 µm.

(21)
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Fig. 3 The Bode magnitude plots of six transfer func-
tions corresponding to six fingers of the comb drive in
Example 3.1 when there are no mistunings. The plots
overlap
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Fig. 4 The Bode magnitude plots of g1(s) and g4(s) correspond-
ing to fingers 1 and 4 of the comb drive in Example 3.1 when there
are mistunings. Since ‖g1‖ is the largest, vibration localization
occurs in finger 1

It should be remarked that in reality the lengths, widths, and thicknesses of the fingers are not exactly known; it is
only known that they are close to the desired values ld , wd , and hd , respectively.

The H∞-norms of g1(s), g2(s), . . . , g6(s) in the presence of mistunings are computed using MATLAB; they are

‖g1‖∞ = 0.9584 × 10−10 s2, ‖g2‖∞ = 0.3827 × 10−10 s2, ‖g3‖∞ = 0.5386 × 10−10 s2,

‖g4‖∞ = 0.3750 × 10−10 s2, ‖g5‖∞ = 0.7306 × 10−10 s2, ‖g6‖∞ = 0.2997 × 10−10 s2.
(22)

It is clear that the H∞-norms are appreciably different from each other; in particular, ‖g1‖∞ is larger than the other
norms and those in Eq. 20. Thus, vibration localization occurs.

The Bode magnitude plots of g1(s) and g4(s) are depicted in Fig. 4. (The Bode magnitude plots of the other
transfer functions are not plotted in Fig. 4 since the figure would have been densely cluttered by plots.) These plots
are different from each other and from those in Fig. 3. It is also noted that, due to mistunings and coupling, even
though small, each finger of the comb drive has several resonant frequencies, unlike the case where there were no
mistunings.

4 Suppression of vibration localization

In this section, it is shown that the passive technique in [1–3] suppresses vibration localization in mistuned non-
axisymmetric periodic structures. The proposed technique desensitizes ‖g1‖∞, ‖g2‖∞, . . . , ‖gn‖∞ to slight mistu-
nings in components of structures. This technique is based on adding small components between the components
of structures.

Let the components of the periodic structure in Fig. 1 be numbered by 1, 2, . . . , n. These components are called
the principal components. These components are supposed to have their dimensions li , wi , and hi equal to desired
values ld , wd , and hd , respectively, for all i = 1, 2, . . . , n.

Let the structure be augmented by adding n − 1 small components between the principal components as shown
in Fig. 5. The added components are numbered by n + 1, n + 2, . . . , 2n − 1 and are called the auxiliary compo-
nents. The widths of the auxiliary components are chosen to be wn+1 = wn+2 = · · · = w2n−1 = wd , and the
thicknesses of these components are chosen to be hn+1 = hn+2 = · · · = h2n−1 = hd . The lengths of the auxiliary
components are chosen to be ln+1 = ln+2 = · · · = l2n−1 = ls � ld . Having the auxiliary components much shorter
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Fig. 5 A non-axisymmetric
periodic structure with n
principal components is
augmented by adding n − 1
small auxiliary components.
The added components
suppress vibration
localization
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than the principal components turns out to be crucially important in suppressing vibration localization in mistuned
non-axisymmetric periodic structure; see also [1–3].

The generalized coordinates corresponding to the augmented structure satisfy

M̃ ¨̃q(t) + αM̃ ˙̃q(t) + K̃ q̃(t) = −f̃ua(t), (23)

for all t ≥ 0. In Eq. 23, the vector of generalized coordinates is

q̃(t) =
[

q(t)
qa(t)

]
∈ R

2n−1, (24)

for all t ≥ 0, where q(t) is that in Eq. 9 and

qa(t) = [qn+1(t) qn+2(t) · · · q2n−1(t)]T ∈ R
n−1, (25)

is the vector of generalized coordinates corresponding to the auxiliary components. The initial conditions of system
(23) are q̃(0) = 02n−1 and ˙̃q(0) = 02n−1. The input (influence) vector corresponding to system (23) is

f̃ =
[

f
fa

]
∈ R

2n−1, (26)

where f is that in Eq. 10 and

fa = [ fn+1 fn+2 · · · f2n−1]T ∈ R
n−1, (27)

is the input vector through which the acceleration ua(·) is applied to the auxiliary components; the elements of fa

are computed via Eq. 5. The mass matrix of system (23) is

M̃ =
[

M 0
0 Ma

]
∈ R

2n−1×2n−1, (28)

where M is that in Eq. 11a and

Ma = diag[mn+1, mn+2, . . . , m2n−1] ∈ R
n−1×n−1, (29)

where mn+1, mn+2, . . . , m2n−1 are computed via Eq. 5. The stiffness matrix of system (23) is

K̃ =
[

K11 K12

K T
12 K22

]
∈ R

2n−1×2n−1, (30)

where

K11 = diag[k1 + γ kc, k2 + 2γ kc, k3 + 2γ kc, . . . , kn−1 + 2γ kc, kn + γ kc] ∈ R
n×n, (31a)

K22 = diag[kn+1 + 2γ kc, kn+2 + 2γ kc, . . . , k2n−1 + 2γ kc] ∈ R
n−1×n−1, (31b)

K12 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−γ kc 0 0 0 · · · 0 0 0
−γ kc −γ kc 0 0 · · · 0 0 0

0 −γ kc −γ kc 0 · · · 0 0 0
...

...
...

... · · · ...
...

...

0 0 0 0
... 0 −γ kc −γ kc

0 0 0 0 · · · 0 0 −γ kc

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
n×n−1, (31c)
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where kn+1, kn+2, . . . , k2n−1 are computed via Eq. 5, and γ > 1 represents increase in the coupling between the
adjacent components of the augmented structure due to the proximity of such components.

For system (23), let gi (s) denote the transfer function from ua(·) to q̃i (·) for an i = 1, 2, . . . , 2n − 1. From
Eq. 23, it follows that⎡
⎢⎢⎢⎣

g1(s)
g2(s)

...

g2n−1(s)

⎤
⎥⎥⎥⎦ = −a4(M̃s2 + αM̃s + K̃ )−1 f̃ . (32)

The occurrence of vibration localization in the principal components due to mistunings in both principal and
auxiliary components is easily determined when ‖g1‖∞, ‖g2‖∞, . . . , ‖gn‖∞ are known. If these norms do not
differ much from each other, then vibration localization does not occur. Note that vibration localization in the
principal components is of primary interest. If vibration localization in the auxiliary components is to be studied,
the H∞-norms of the transfer functions corresponding to those components should be computed. As will be shown
in the following example, the auxiliary components suppress vibration localization in the principal components,
while do not let such phenomenon occur in themselves either.

Example 4.1 Consider the comb drive in Example 3.1. The (principal) components of the comb drive are numbered
by 1, 2, . . . , 6. Five auxiliary components are added to the comb drive and numbered by 7, 8, . . . , 11. The desired
length of the auxiliary components is chosen ls = 0.05ld = 5 µm. The desired widths and thicknesses of the
auxiliary components are, respectively, wd and hd , given in Eq. 18.

To confirm the efficacy of the auxiliary components in desensitizing ‖g1‖∞, ‖g2‖∞, . . . , ‖g6‖∞ to mistunings,
and hence in suppressing vibration localization, let the dimensions of the auxiliary components be

l7 = 5 µm, w7 = 7.01 µm, h7 = 2.05 µm,

l8 = 5.02 µm, w8 = 7.05 µm, h8 = 2.01 µm,

l9 = 4.98 µm, w9 = 6.95 µm, h9 = 1.99 µm,

l10 = 4.99 µm, w10 = 6.99 µm, h10 = 2 µm,

l11 = 5.01 µm, w11 = 7.02 µm, h11 = 2.02 µm.

(33)

The dimensions of the auxiliary components differ from the desired dimensions. Since the components of the
augmented comb drive are closer to each other, it is inferred that the coupling between the adjacent components is
stronger. Stronger coupling is taken into account by choosing γ = 2 in Eq. 31.

The H∞-norms of g1(s), g2(s), . . . , g11(s) are computed using MATLAB; they are

‖g1‖∞ = 0.6395 × 10−10 s2, ‖g2‖∞ = 0.5630 × 10−10 s2, ‖g3‖∞ = 0.6110 × 10−10 s2,

‖g4‖∞ = 0.5112 × 10−10 s2, ‖g5‖∞ = 0.5893 × 10−10 s2, ‖g6‖∞ = 0.5647 × 10−10 s2,

‖g7‖∞ = 0.1480 × 10−12 s2, ‖g8‖∞ = 0.1521 × 10−12 s2, ‖g9‖∞ = 0.1513 × 10−12 s2,

‖g10‖∞ = 0.1511 × 10−12 s2, ‖g11‖∞ = 0.1507 × 10−12 s2.

(34)

It is clear that the H∞-norms of the transfer functions corresponding to the principal components are almost equal
and closer to those in Eq. 20; so are almost equal those corresponding to the auxiliary components. That is, even
though there are mistunings in all components of the augmented comb drive, the principal components have almost
the same dynamics. This implies that vibration localization is suppressed. To witness, the Bode magnitude plots of
g1(s), g2(s), . . . , g11(s) are depicted in Fig. 6a. The Bode magnitude plots of g1(s), g2(s), . . . , g6(s) are magnified
and shown in Fig. 6b. It is also evident from these plots that the effect of coupling is reduced and the comb drive
components do not have several resonant frequencies, unlike the case shown in Fig. 4.

5 Mathematical justification

Suppression of vibration localization in mistuned non-axisymmetric periodic structures by the auxiliary components
was illustrated in Example 4.1. In this section, it is rigorously proved that the auxiliary components indeed suppress
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Fig. 6 (a) The Bode magnitude plots of transfer functions corresponding to the principal and auxiliary components of the augmented
comb drive in Example 4.1; (b) The magnification of the Bode magnitude plots corresponding to transfer functions of the principal
components

vibration localization. In other words, it will be shown that the small auxiliary components added to a mistuned
structure make the H∞-norms of the transfer functions corresponding to the principal components almost equal
and insensitive to mistunings in all components. The analysis in this section follows those in [1,3]. Details of the
analysis, however, are different, since the mathematical models of the structure components differ from those in
[1,3].

System (23) can be written as
[

M 0
0 Ma

] [
q̈(t)
q̈a(t)

]
+ α

[
M 0
0 Ma

] [
q̇(t)
q̇a(t)

]
+

[
K11 K12

K T
12 K22

] [
q(t)
qa(t)

]
= −

[
f
fa

]
ua(t), (35)

for all t ≥ 0, where q(0) = 0n, qa(0) = 0n−1, q̇(0) = 0n , and q̇a(0) = 0n−1.
Vibration localization in system (35) is studied in the following. The conclusion to be reached is that, if

0 < ls � ld , then vibration localization in system (35) does not occur.
It is clear that the lengths of the auxiliary components satisfy the following relation:

ln+i = ε l̄n+i , (36)

for all i = 1, 2, . . . , n − 1, where

ε := ls
ld

, (37a)

l̄n+i = ldln+i

ls
. (37b)

From Eq. 37, it follows that

Ma = εM̄a, K22 = K̄22

ε3 , fa = εf̄a, (38)

where

M̄a = a1ρ diag[wn+1hn+1l̄n+1, wn+2hn+2l̄n+2, . . . , w2n−1h2n−1l̄2n−1] ∈ R
n−1×n−1, (39)

K̄22 = diag

[
a2 Ewn+1h3

n+1

3l̄3
n+1

+ 2 ε3γ kc,
a2 Ewn+2h3

n+2

3l̄3
n+2

+ 2 ε3γ kc, . . . ,
a2 Ew2n−1h3

2n−1

3l̄3
2n−1

+ 2 ε3γ kc

]
∈ R

n−1×n−1, (40)
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f̄a = a3ρ[wn+1hn+1l̄n+1, wn+2hn+2l̄n+2, . . . , w2n−1h2n−1l̄2n−1] ∈ R
n−1. (41)

Using Eq. 38, system (35) can be written as

M q̈(t) + αM q̇(t) + K11q(t) + K12qa(t) = −f ua(t), (42a)

ε4 M̄a q̈a(t) + ε4αM̄a q̇a(t) + ε3 K T
12q(t) + K̄22qa(t) = −ε4 f̄aua(t), (42b)

for all t ≥ 0, where q(0) = 0n, qa(0) = 0n−1, q̇(0) = 0n , and q̇a(0) = 0n−1.
It is noted that 0 < ε � 1 since ls � ld . Small ε implies that there is dichotomy in the dynamics of system (42):

the vector q(·) evolves slowly in time, whereas the vector qa(·) evolves fast. Due to this dichotomy, system (42) can
be studied by the singular perturbation method see, e.g., [32–35] and references therein. According to this method,
for sufficiently small ε, the dynamics of system (42) can be approximated by the dynamics of two subsystems.
These subsystems are the slow and fast subsystems and are presented in the following.

5.1 Slow subsystem

The slow subsystem is an n-dimensional system obtained as follows. In Eq. 42b, first set ε = 0, and then solve for
qa(·). The result is

qa(t) = 0n−1, (43)

for all t ≥ 0. Substituting qa(·) in Eq. 42a, the representation of the slow subsystem is obtained as

M q̈(t) + αM q̇(t) + K11q(t) = −f ua(t), (44)

for all t ≥ 0, where q(0) = 0n and q̇(0) = 0n .
Since M and K11 are diagonal matrices, system (44) is a set of n decoupled second-order systems given by

mi q̈i (t) + αmi q̇i (t) + (ki + γ kc)qi (t) = − fi ua(t), for i = 1, n, (45a)

mi q̈i (t) + αmi q̇i (t) + (ki + 2γ kc)qi (t) = − fi ua(t), for all i = 2, . . . , n − 1, (45b)

for all t ≥ 0, where qi (t) ∈ R, and qi (0) = 0 and q̇i (0) = 0 for all i = 1, . . . , n.
Having the simple representation in Eq. 45, the transfer function from ua(·) to yi (li , ·) = φ(li )qi (·) is readily

obtained as

gi (s) = − a4 fi

mi s2 + αmi s + ki + γ kc
, for i = 1, n, (46a)

gi (s) = − a4 fi

mi s2 + αmi s + ki + 2γ kc
, for all i = 2, . . . , n − 1, (46b)

where a4 is given in Eq. 14.
It can be easily verified that the resonant frequencies of the systems represented by the transfer functions in

Eqs. 46a and 46b are, respectively,

ωi
∗ =

(
a2 Ewi hi

3/(3li 3) + γ kc

a1ρwi hi li
− α2

2

)1/2

, for i = 1, n, (47a)

ωi
∗ =

(
a2 Ewi hi

3/(3li 3) + 2γ kc

a1ρwi hi li
− α2

2

)1/2

, for all i = 2, . . . , n − 1. (47b)

The H∞-norms of the transfer functions in Eqs. 46a and 46b are, respectively,

‖gi‖∞ = a3a4

αa1

(
a2 Ewi hi

3/(3li 3)+γ kc
a1ρwi hi li

− α2

4

)1/2 , for i = 1, n, (48a)
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‖gi‖∞ = a3a4

αa1

(
a2 Ewi hi

3/(3li 3)+2γ kc
a1ρwi hi li

− α2

4

)1/2 , for all i = 2, . . . , n − 1. (48b)

Since kc is small and li , wi , and hi are close to ld , wd and hd , respectively, for all i = 1, 2, . . . , n, it follows that
ω1

∗, ω2
∗, . . . , ωn

∗ in Eq. 47 are close to each other, so are ‖g1‖∞, ‖g2‖∞, . . . , ‖gn‖∞ in Eq. 48.

5.2 Fast subsystem

The fast subsystem is an (n − 1)-dimensional system obtained as follows. In system (42), set t = ε2τ . The result is

M
d2q(τ )

dτ 2 + ε2αM
dq(τ )

dτ
+ ε4[K11q(τ ) + K12qa(τ )] = −ε4fua(τ ), (49a)

M̄a
d2qa(τ )

dτ 2 + ε2αM̄a
dqa(τ )

dτ
+ ε3 K12

T q(τ ) + K̄22qa(τ ) = −ε4 f̄aua(τ ), (49b)

for all τ ≥ 0, where q(0) = 0n, qa(0) = 0n−1, dq(τ )/d(τ ) = 0n , and dqa(τ )/dτ = 0n−1 at τ = 0. Setting ε = 0
in Eq. 49a yields that q(τ ) = 0n for all τ ≥ 0, and hence Eq. 49b can be written as

M̄a
d2qa(τ )

dτ 2 + ε2αM̄a
dqa(τ )

dτ
+ K̄22qa(τ ) = −ε4 f̄aua(τ ), (50)

for all τ ≥ 0, where qa(0) = 0n−1 and dqa(τ )/dτ = 0n−1 at τ = 0. System (50) is the representation of the fast
subsystem. Since M̄a and K̄22 are diagonal matrices, system (50) is a set of n − 1 decoupled second-order systems,
one of which for an i = 1, 2, . . . , n − 1 is

a1ρwn+i hn+i l̄n+i
d2qn+i (τ )

dτ 2 + ε2αa1ρwn+i hn+i l̄n+i
dqn+i (τ )

dτ

+
[

a2 Ewn+i h3
n+i

3l̄3
n+i

+ 2ε3γ kc

]
qn+i (τ ) = −ε4a3ρwn+i hn+i l̄n+i ua(τ ), (51)

for all τ ≥ 0, where qn+i (τ ) ∈ R, and qn+i (0) = 0 and dqn+i (τ )/dτ = 0 at τ = 0. Setting τ = t/ε2 and using
Eq. 36, one can write Eq. 51 as

mn+i q̈n+i (t) + αmn+i q̇n+i (t) + (kn+i + 2γ kc)qn+i (t) = − fn+i ua(t), (52)

for all t ≥ 0 and i = 1, . . . , n − 1, where mn+i , kn+i , and fn+i are computed via Eq. 5, and qn+i (0) = 0 and
q̇n+i (0) = 0.

Having the simple representation in Eq. 52, the transfer function from ua(·) to yn+i (·) = φ(ln+i )qn+i (·) is
obtained as

gn+i (s) = − a4 fn+i

mn+i s2 + αmn+i s + kn+i + 2γ kc
, (53)

for all i = 1, 2, . . . , n − 1.
The resonant frequency of the system represented by the transfer function in Eq. 53 is

ω∗
n+i =

(
a2 Ewn+i h3

n+i/(3l3
n+i ) + 2γ kc

a1ρwn+i hn+i ln+i
− α2

2

)1/2

, (54)

for all i = 1, 2, . . . , n − 1. The H∞-norm of the transfer function in Eq. 53 is

‖gn+i‖∞ = a3a4

αa1

(
a2 Ewn+i h3

n+i /(3l3
n+i )+2γ kc

a1ρwn+i hn+i ln+i
− α2

4

)1/2 , (55)

for all i = 1, 2, . . . , n − 1. Since kc is small and ln+i , wn+i , and hn+i are close to ls, wd , and hd , respec-
tively, for all i = 1, 2, . . . , n − 1, it follows that ω∗

n+1, ω
∗
n+2, . . . , ω

∗
2n−1 in Eq. 54 are close to each other, so

are ‖gn+1‖∞, ‖gn+2‖∞, . . . , ‖g2n−1‖∞ in Eq. 55.
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Remarks Several conclusions regarding the slow and fast subsystems are now drawn:

(1) Since ls�ld the H∞-norms in Eqs. 48 and 55 satisfy the following inequality:

‖gn+ j‖∞�‖gi‖∞, (56)

for any i = 1, 2, . . . , n and j = 1, 2, . . . , n − 1.
(2) For lightly damped structures, it follows from Eqs. 48 and 55 that

‖gi‖∞ = a3a4

α(a1a2)1/2

(
3ρ

E

)1/2 li 2

hi
, ‖gn+ j‖∞ = a3a4

α(a1a2)1/2

(
3ρ

E

)1/2 l2
n+ j

hn+ j
, (57a)

‖gn+ j‖∞
‖gi‖∞

≈ ε2, (57b)

for any i = 1, 2, . . . , n and j = 1, 2, . . . , n − 1. For ε = 0.05, the ratio in Eq. 57b justifies the H∞-norms of
the transfer functions corresponding to the principal and auxiliary components of the comb drive in Example
4.1 given in Eq. 34; see also Fig. 6.

(3) For lightly damped structures, it is concluded from Eqs. 47 and 54 that the resonant frequencies of the slow and
fast subsystems satisfy the following relation:

ω∗
n+ j

ω∗
i

≈ li 2

l2
n+ j

≈ 1

ε2 � 1, (58)

for any i = 1, 2, . . . , n and j = 1, 2, . . . , n − 1. For ε = 0.05, the ratio in Eq. 58 justifies the resonant frequencies
of the principal and auxiliary components of the comb drive in Example 4.1; see Fig. 6.

Having the slow and fast subsystems given by Eqs. 45 and 52, respectively, one may draw conclusions regard-
ing the augmented structure using the singular perturbation method. According to this method, for sufficiently
small ε, the dynamics of the (2n − 1)-dimensional augmented structure in Eq. 23 (equivalently Eq. 35) can be
approximated by those of the n-dimensional slow subsystem and the (n − 1)-dimensional fast subsystem over large
and small time scales, respectively, Therefore, the transfer functions corresponding to the principal (respectively,
auxiliary) components can be approximated at low (high) frequencies by those corresponding to the slow (fast)
subsystem given by Eq. 46 (Eq. 53). From Eq. 48, or Eq. 57a for lightly damped structures, it is evident that the
H∞-norms of the transfer functions corresponding to the slow subsystems are almost equal; hence, so are those of
the transfer functions corresponding to the principal components. That is, the H∞-norms of the transfer functions
of the principal components are insensitive to mistunings. In other words, vibration localization does not occur in
the principal components. It is also concluded that: (i) the H∞-norms of the transfer functions corresponding to
the auxiliary components are almost equal to those in Eq. 55, or those in Eq. 57a for lightly damped structures;
(ii) by inequality (56), or Eq. 57b for lightly damped structures, these norms are much smaller than those of the
transfer functions corresponding to the principal components; (iii) by inequality (58), for lightly damped structures,
the resonant frequencies of the auxiliary components are much higher than those of the principal components.
Thus, (i) vibration localization does not occur in the auxiliary components; (ii) the amplitudes of vibration of such
components are small.

6 Conclusions

In this paper, mistuned non-axisymmetric periodic structures have been studied. Mistunings are due to slight
differences in the geometry and material properties of components of such structures. Small mistunings can cause
significant differences in the dynamics of components of structures. It is well known that in mistuned periodic
structures, some components may vibrate with small amplitudes, while some others may vibrate with significantly
larger amplitudes. Such a behavior is known as vibration localization and is undesirable.
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In this paper, it was shown that vibration localization in mistuned non-axisymmetric periodic structures can
be suppressed by the passive technique proposed in [1–3]. The suppression is achieved by adding small compo-
nents between components of structures. The occurrence of vibration localization in fingers of a comb drive and
suppression of such phenomenon by adding small components between the fingers were shown via examples.

Following the steps taken in this paper, two conclusions can be drawn. In the following, these conclusions are
stated without details.

(i) A non-axisymmetric structure can be augmented by adding n + 1 small auxiliary components, where two of
such components are added to both ends of the structure. This arrangement guarantees that the principal com-
ponents at both ends of the structure are surrounded by two auxiliary components. The augmented structure
is slightly different from what is presented in the paper. However, vibration localization is suppressed in the
augmented structure.

(ii) Adding small auxiliary components between the principal components of structures, periodic or otherwise,
has a very important consequence. Consider a structure which is not periodic, that is, its components are not
designed and fabricated to be identical. For instance, consider the structure in Fig. 1, where its components
have various sizes. There is certainly coupling between the structure components. Suppose that small com-
ponents, which are smaller than the smallest component of the structure, are added between the structure
components. The added small components decouple the structure components. The decoupling effect of the
small components can be established by applying the mathematical technique used in this paper.

By (ii), suppression of vibration localization in periodic structures can be explained by a different argument.
When small components are added to a periodic structure, the structure components are decoupled. Components
of a periodic structure have same dynamics when they are decoupled. This implies that vibration localization does
not occur.
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